Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2400844, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613834

ABSTRACT

Scaling in insect wings is a complex phenomenon that seems pivotal in maintaining wing functionality. In this study, the relationship between wing size and the size, location, and shape of wing cells in dragonflies and damselflies (Odonata) is investigated, aiming to address the question of how these factors are interconnected. To this end, WingGram, the recently developed computer-vision-based software, is used to extract the geometric features of wing cells of 389 dragonflies and damselfly wings from 197 species and 16 families. It has been found that the cell length of the wings does not depend on the wing size. Despite the wide variation in wing length (8.42 to 56.5 mm) and cell length (0.1 to 8.5 mm), over 80% of the cells had a length ranging from 0.5 to 1.5 mm, which was previously identified as the critical crack length of the membrane of locust wings. An isometric scaling of cells is also observed with maximum size in each wing, which increased as the size increased. Smaller cells tended to be more circular than larger cells. The results have implications for bio-mimetics, inspiring new materials and designs for artificial wings with potential applications in aerospace engineering and robotics.

2.
Sci Rep ; 12(1): 13917, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977980

ABSTRACT

Despite extensive research on the biomechanics of insect wings over the past years, direct mechanical measurements on sensitive wing specimens remain very challenging. This is especially true for examining delicate museum specimens. This has made the finite element method popular in studies of wing biomechanics. Considering the complexities of insect wings, developing a wing model is usually error-prone and time-consuming. Hence, numerical studies in this area have often accompanied oversimplified models. Here we address this challenge by developing a new tool for fast, precise modelling of insect wings. This application, called WingGram, uses computer vision to detect the boundaries of wings and wing cells from a 2D image. The app can be used to develop wing models that include complex venations, corrugations and camber. WingGram can extract geometric features of the wings, including dimensions of the wing domain and subdomains and the location of vein junctions. Allowing researchers to simply model wings with a variety of forms, shapes and sizes, our application can facilitate studies of insect wing morphology and biomechanics. Being an open-access resource, WingGram has a unique application to expand how scientists, educators, and industry professionals analyse insect wings and similar shell structures in other fields, such as aerospace.


Subject(s)
Flight, Animal , Wings, Animal , Animals , Biomechanical Phenomena , Insecta , Models, Biological , Wings, Animal/anatomy & histology
3.
J Mech Behav Biomed Mater ; 124: 104868, 2021 12.
Article in English | MEDLINE | ID: mdl-34624833

ABSTRACT

Experimental investigation into the mechanical response of red blood cells is presently impeded with the main impediments being the micro dimensions involved and ethical issues associated with in vivo testing. The widely employed alternative approach of computational modelling suffers from its own inherent limitations being reliant on precise constitutive and boundary information. Moreover, and somewhat critically, numerical computational models themselves are required to be validated by means of experimentation and hence suffer similar impediments. An alternative experimental approach is examined in this paper involving large-scale equivalent models manufactured principally from inorganic, and to lesser extent organic, materials. Although there presently exists no known method providing the means to investigate the mechanical response of red blood cells using scaled models simultaneously having different dimensions and materials, the present paper aims to develop a scaled framework based on the new finite-similitude theory that has appeared in the recent open literature. Computational models are employed to test the effectiveness of the proposed method, which in principle can provide experimental solution methods to a wide range of practical applications including the design of red-blood cell nanorobots and drug delivery systems. By means of experimentally validated numerical experiments under impact loading it is revealed that although exact prediction is not achieved good accuracy can nevertheless be obtained. Furthermore, it is demonstrated how the proposed approach for first time provides a means to relate models at different scales founded on different constitutive equations.


Subject(s)
Erythrocytes , Finite Element Analysis
4.
Adv Sci (Weinh) ; 8(16): e2004383, 2021 08.
Article in English | MEDLINE | ID: mdl-34085417

ABSTRACT

Wing-to-wing coupling mechanisms synchronize motions of insect wings and minimize their aerodynamic interference. Albeit they share the same function, their morphological traits appreciably vary across groups. Here the structure-material-function relationship of wing couplings of nine castes and species of Hymenoptera is investigated. It is shown that the springiness, robustness, and asymmetric behavior augment the functionality of the coupling by reducing stress concentrations and minimizing the impacts of excessive flight forces. A quantitative link is established between morphological variants of the coupling mechanisms and forces to which they are subjected. Inspired by the coupling mechanisms, a rotating-sliding mechanical joint that withstands tension and compression and can also be locked/unlocked is fabricated. This is the first biomimetic research of this type that integrates approaches from biology and engineering.


Subject(s)
Biomechanical Phenomena/physiology , Biomimetics/methods , Models, Biological , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , Bees , Wasps
5.
Insects ; 11(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824828

ABSTRACT

The finite element (FE) method is one of the most widely used numerical techniques for the simulation of the mechanical behavior of engineering and biological objects. Although very efficient, the use of the FE method relies on the development of accurate models of the objects under consideration. The development of detailed FE models of often complex-shaped objects, however, can be a time-consuming and error-prone procedure in practice. Hence, many researchers aim to reach a compromise between the simplicity and accuracy of their developed models. In this study, we adapted Distmesh2D, a popular meshing tool, to develop a powerful application for the modeling of geometrically complex objects, such as insect wings. The use of the burning algorithm (BA) in digital image processing (DIP) enabled our method to automatically detect an arbitrary domain and its subdomains in a given image. This algorithm, in combination with the mesh generator Distmesh2D, was used to develop detailed FE models of both planar and out-of-plane (i.e., three-dimensionally corrugated) domains containing discontinuities and consisting of numerous subdomains. To easily implement the method, we developed an application using the Matlab App Designer. This application, called WingMesh, was particularly designed and applied for rapid numerical modeling of complicated insect wings but is also applicable for modeling purposes in the earth, engineering, mathematical, and physical sciences.

6.
Acta Biomater ; 110: 188-195, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32360529

ABSTRACT

Insects thrived soon after they acquired the ability to fly. Beyond the reach of the non-flying competitors, flying insects colonized a wide variety of habitats. Although flight is an efficient way to disperse and escape predators, it is energetically costly. Hence, various strategies are served to enhance flight efficiency as much as possible. A striking example is the development of wing-to-wing coupling mechanisms in many neopterous insects to minimize the aerodynamic interference of fore and hind wings. However, it remains unclear how the seemingly delicate coupling mechanisms can withstand excessive mechanical stresses encountered during flight. Here we studied the complicated coupling mechanism of drone honey bees, which consists of a set of tiny hooks and a thickened membrane. We found that the durability of the coupling mechanism results from two complementary strategies. First, the angles at which hooks and membrane are coupled and uncoupled may be adjusted, so that the resulting stresses are minimized. Second, the out-of-plane structure, soft base and pronounced tip reduce the stress developed in the hooks, yet maintaining the coupling strength. We anticipate our study, which presents the first numerical model of insect wing coupling mechanisms, to be a starting point for the development of more sophisticated models in the future. Such models are particularly useful for comparative analysis of the influence of different morphological features on the functionality of complex coupling mechanisms. STATEMENT OF SIGNIFICANCE: Hamuli, or 'tiny hooks', is the Greek term for hook-like structures on the anterior margin of honey bee hind wings. By fitting into the fold posterior margin of fore wings, the hooks couple the two wings to each other. Despite their seemingly fragile structure, the hooks withstand substantial mechanical stresses. We show that the out-of-plane structure, soft base and pronounced tip are morphological features that enhance the durability of the hooks, without compromising their function.


Subject(s)
Flight, Animal , Wings, Animal , Animals , Biomechanical Phenomena , Insecta , Models, Biological , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...